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Abstract—A new approach to estimate the overall behavior of an inhomogeneous body is applied
to investigate the average elastic-plastic state of composite materials in small deformation. The
method is based on the concept of the average field of an infinite body with inhomogeneities, which
is replaced by an equivalent body with homogeneous inclusions having appropriate cigenstrains
that are composed of the actual plastic misfit strains and the properly determined eigenstrains by
the equivalent replacement of the inhomogeneities. A simple example is given for a pure shear state
of the elastic-perfectly plastic composite materials with spherical inhomogeneities. The over-
all hardening rate. quantitative estimate of ductility improvement, and unloading behavior are
discussed.

. INTRODUCTION

Attempting to understand the overall mechanical behavior of composite matcrials has been
one of the major subjects in many engincering ficlds for many years. When the volume
fraction of inhomogeneitics is small, Eshelby’s method evaluates such average behavior
quite reasonably and explicitly including the shape effect of dispersoids (Eshelby, 1957).

However, when the interaction between inclusions becomes significant as the volume
fraction increases, the so-called sclf-consistent method has been introduced by Kroner
(1958), Budiansky (1965), and Hill (1965). This method can apply even for crystalline
materials as a limiting case when the matrix portion of composites vanishes. Hutchinson
(1964, 1970) has utilized this method to estimate the elastic-plastic incremental relations
of crystalline materials and composites. Iwakuma and Nemat-Nasser (1984) and Nemat-
Nasser and Iwakuma (1985) have extended the same method for finite deformations to
predict ductile instability of strain localization. The method had been generalized and
modified by Willis and Acton (1976), and Willis (1977). However, the self-consistent method
fails to give a satisfuctory estimate when the dispersoids are either voids or perfectly rigid,
and yields unacceptable results when the volume fraction exceeds a certain value.

Recently several researches have been conducted to evaluate the average elastic moduli
of composite materials. As fur as the average field is concerned, the formulation becomes
very simple by the Mori-Tanaka theory (Mori and Tanaka, 1973). Using the modification
of the Mori-Tanaka method, Benveniste (1987) and Mori and Wakashima (1989) have
estimated the average elastic moduli of composite materials. Here the aspect of a back
stress is introduced to take into account the interaction of inhomogeneities and matrix
materials.

Moreover the results become consistently identical in both cases where either the far-
field stress or far-field displacement is prescribéd. In other words, the estimation of material
propertics can be carried out independently of the f{ar-field boundary conditions. This is
strongly desirable from a physical point of view. The prediction by this method seems to
give reasonable results even when the volume fraction becomes large. When the shape of
all inhomogeneities with the same elasticity is spherical, it can be shown that the overall
elastic moduli coincide with either one of the bounds calculated through a variational
method by Hashin and Shtrikman (1963).
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Here we apply this method to evaluate average elastic-plastic relations of compostte
matenals within the framework of small deformations. For simplicity. a simple elastic-
perfectly-plastic material is considered for the matrix and inhomogeneities. One of the main
objectives is to calculate the average hardening coefficient of such two-phase composites.

2. DETERMINATION OF APPROXIMATE ELASTIC-PLASTIC BEHAVIOR

Consider a sufliciently large body D which contains identically shaped and randomly
distributed and oriented inhomogeneities, Q = Q, +Q,+Q,+- - -, the total volume fraction
of which is denoted by /. The elastic moduli of the matrix W (= D —Q) and inhomogeneities
are C and C*. respectively. These materials are elastic -perfectly-plastic with the yield shear
stresses 1y for the matrix and t¥ for the inhomogeneity.

The following method based on that of Mori and Tanaka, yields the same results tor
the cases when either the surface traction or the surface displacement is prescribed on ¢D.
As a matter of fact. this method has a great advantage because no boundary condition is
necessary to determine the overall state. However, for the sake of clear comprehension. we
here consider the case when the surface traction (469) is applied on the boundary of the
body whose outward unit normal vector is denoted by 4. The case when the surface
displacement is prescribed is given in the Appendix. The inhomogeneities arc distributed
randomly and are of the same shape. For the sake of simplicity, we consider only one
representative volume ¥ which contains only one inhomogeneity. Let the shape of the
representative volume be similar to that of the inhomogeneity.

It no inhomogencity cxists, the overall strain £ distributes uniformly, where 67 =
C(E”=&") and &" denotes the overall uniform plastic strain. The existence of inhomo-
gencities provides disturbance in local ficlds of both the matrix and inhomogencities. Let
a, and d, denote the average disturbed stress ficlds of the matrnix and inhomogencity,
respectively, Then, since the overall stress ficld s preseribed, we must have

(1 "‘1/.)5'.11 +,/.°~'u =0. (h

Mort and Tanaka (1973) have shown that the average disturbed strain field due to the
existence of an inhomogencity vanishes outside of the inhomogeneity, provided that the
shapes of the representative volume V and inhomogeneity Qg are taken as similar. Henee
the average disturbed strain ficld due to the inhomogeneity exists only inside of the inclusion
in the representative volume. However, the overall strain disturbance is no longer zero even
outside of the inclusion because the surface displacement is free in the very fur ficld.
Therefore, the average ficld in the matrix can be written as

GO+ Gy = CEY+i,—E0), (2)

where &4 is the average plastic strain in the matrix, and £, is the overall uniform disturbance.
In other words, &, is to take into account the interaction between neighboring representative
volumes. Then, in the inhomogeneity Q.

G464 = C*E+8p+ 5> = Q). (3)

where ¥ expresses the disturbed strain field due to the existence of the inhomogencity and

misfit by plasticity inside the representative volume; ) indicates the average over Q!

£h is the average plastic strain in Q. Since all inhomogencitics are of the sume shape with

the same material properties, the average over Q is identical with that over Q.
Substitution of eqn (2) into eqn (3) yields

G +6q = 6*{6dI(O:O+5,\/)+<}T>‘“A‘?I’}'~ )
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AsP = gf-¢f,. (5

From eqn (4). the local disturbed strain field 7 due to plasticity is caused only by the misfit

of the plastic strain AZ”. It is natural because the superposition of the uniform plastic strain

(—£&%) over the entire body does not disturb the entire stress field. Applying the equivalent
inclusion method. we have the equivalency condition in one inhomogeneity as

G0 +dq = C*{C~(6°+6,) +<{7>— A&} (6a)

= C{C (G + 6+ —(BE"+E*)]. (6b)

where £* denotes the eigenstrain. Then the local disturbance 7 is given by (see Mura, 1982)
(%) = —f Cutmn {8210 +E20()} Gt (F =D + G (=D} dE. (7)
Qe

When the inhomogeneity has the ellipsoidal shape, integration of eqn (7) over Q4 leads to
<G> = S(Ae + (%)), ®)
where § becomes constant in terms of dimensions of inhomogencity and Poisson’s ratio of
the matrix, and is called Eshelby’s tensor (Eshelby, 1957).
Substitution of eqn (8) into eqn (6b) yiclds
Gq = 6y + C(S—DAZ"+ %)), 9)
where Tis the identity tensor. From egns (1) and (9), we have
Gy = —fC(S 1 (E*)). (10)
Putting eqn (10) back into eqn (9), we obtain
Go = (1 =)C(S= DA+ (). (1)
On the other hand, the equivalency condition, eqn (6), with ¢qn (8) results in

£+ E*Y = [C—(C=-C*) S~/ (S-D}] ' {(C-C*C 62+ C*as"). (12

Therefore the average stress ficlds in the matrix and inhomogeneity are obtained from eqns
(10)-(12) as follows:
7+6y =6"—fCS-DNIC-(C~C*)S—f(S-D}] "((C-CT*)C 6"+ C*as"),
6% +6q = 6+ (1-NNCS-DHIC-(C-CH{S-f(S-D}1!
x {(C-C*)C-'¢°+C*As"}. (13)
In order to calculate the average strain field, it is convenient to express its elastic part.
From cqns (2) and (4), we can write
£ = CY(d%+dy).
Ea = C (G0 +du) +<{T)— A&, (14)
where &5, and &g are the elastic part of the average strain fields in the matrix and inhom-

ogeneity. respectively. Let £ denote the overall average strain, and £” the average plastic
strain defined by
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F= (=5 +SfEa. (15)
Then the overall average elastic strain can be given by

F=f-8

= (=) +fEq. (16)

|||

Considering eqns (8) and (12), and substituting egn (14) into eqn (16), we finally obtain
the overall stress—strain relation as

=[C—(C-C»{S—/S=-D}) 'IC-(1=/)C-C*)S}C"'d

+/(L—fUC=C*NHS-DAE. (D)

ml
°=|

3. AN EXAMPLE: SPHERICAL INHOMOGENEITY IN AN ISOTROPIC BODY

3.1. General formulation
As an example, let the shape of inhomogeneities be spherical. The Eshelby tensor for
a spherical inhomogeneity can be decomposed into two parts as

S=al'+pI°,

where the 7' and 77 components correspond to volumetric and shear deformation, respec-
tively, and

| [N 7 F_T!
I,,k, = 30,04, [~ = 1-1,
in which o, indicates the Kronecker delta. Heneeforth we express such a tensor as
S =(np). (18)

where

! 2(4—5v) ,
=301y h= 15(1—v)" (19)

and v is Poisson’s ratio of the matrix material.
Let g and 4 denote the Lamé constants of the matrix material, and p* and A* be the
corresponding constants of the inhomogeneity. Then

C = (3r.2u). C* = (3r*, 2u*), (20)

where x is the bulk modulus defined by (4 + 24/3). Substitution of eqns (19) and (20) into
eqn (13) results in

o - . (x= I x—=r*) (B=D(u—p*){., |3@x—=Dse* 2(B-Dup* |, .,
0'0+0"w=0'0—f|:‘“"‘ y , 5 :|o' ——j[ y . B ]Ac .

(x= D(k=~") (/f—l)(;tf;:*)]
A N B

6% +6q=23" +(l—-f)[+—~-——-

+<|—/‘)[W":)""*.’("-B”““ JA"" @1

where
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A=sw—{a—fa-D}(k—r*). B=pu—{f—f(B-Di(u—p*). 2

Similarly eqn (17) becomes

e [a (I=)x=k*)x p=(1=f)u—p )ﬂ]-o
£t 3xA ’ 2uB

+f(l_f)[(1—l):<—x )’(ﬂ~l)gt—u )]As.,' @)

3.2. Pure shear

Overall shearing behavior can be easily estimated as the simplest case, because only
one component of stress tensors is necessary. Let the body considered be subjected to pure
shearing in the x,~x,-plane. Then the yield condition in particular becomes as simple as

(% +04) 2] =¥ [(6° +06q) 2| = 1% (24a), (24b)

in the matrix and inhomogeneity respectively as an average. From eqns (21) and (23) we
need only the 7* components to obtain

(B—-D(u—p*) o0 2(f—Npp*

(6% +0ou); = 0?2 —f B ‘f“‘—"—A'P:' (25a)
. B -1 ,
00+ 0wz = atsr (1= LD o L 2000 pr - asty
— —n* »
Y T LI o (W o5

2;113

Stage 1. both materiuls are elastic. When both materials are in clasticity, no plastic
strain exists and eqn (25c¢) yields

R L= (l=m){B~f(B=1)} 2,‘{, f(1—m) }

e N gy gy YRy —a-n-mpor 9

where the following non-dimensional parameter is introduced :

u*
n=-—

27

Equation (26) exactly coincides with the result by Mori and Wakashima (1989).

Stage 2a : if the matrix yields first. At the initial yielding, the yeild condition eqn (24a)
is satisfied, and therefore putting Acf, = 0 into eqn (25a), we obtain the overall stress at
the first yielding (¢%.). as

0t =[ 1+ L0=omly. (29)

Since the matrix material keeps satisfying the yield condition even after this initial yielding,
its local stress level remains the same as the yield stress. Therefore from eqn (25a):
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T 2fput (B—1
R L S ) 29

(69+0y),, =

Eliminating Az%, from egns (25¢) and (29). we obtain

m+(1-pHi-Hl-m (_l_:{l(l—m)r“

20(E— f‘p . = 4 — ;. 3
W= = e ) B—f (B=T)1] 2 m ’ (30)
As the plastic strain exists only in the matrix, Aef, = — (&%) .. Therefore from eqns (15)
and (29):
2uETy = =2u(1=)Aef,
_—U=DU=BA=m) (D= 0=mB= B0l
mf(f—1) mf(fi—1)
From eqns (30) and (31), the overall stress-strain relation can be obtained as
=2 mf(1—pf) én_(l—f){(l——m)[i—l} o (32)

MG ; — Ty,
HAZBH+mpa=7) =P +mpQ—f) *
which shows a bilincar relation together with eqn (26). The coetlicient in the first term of
the right-hand side of eqn (32) represents the average overall hardening rate after the first
yiclding. Similarly climination of Ac?, from egns (25b) and (29) leads to the local stress

state inside an inhomogeneity as

()’ l__ "
(6" +0y), = G/'.‘ - f/ Ty, (33)

Stage 3 then the inhomaogeneity vields. As the applied stress increases, the stress state
inside inhomogeneitics increases to achieve its yield condition. Then substitution of eqn
(33) into eqn (24b) results in

G2 L—f
(6()+(7(x)|: = o T T T';" = T(r)'-

/ /

and the maximum stress (69,), can be obtained as
(a7, =Ty = (1 =)ty +/7%. (34)
Since £, becomes arbitrary at this stress level, the overall strain cannot be determined
uniquely, and thus this state can be called ultimate. Namely the ultimate state is achieved
when the overall stress reaches the average value of the yield stresses of the matrix and

inhomogeneity 7.

Stage 2b: if the inhomogeneity yields first. On the contrary, if the inhomogeneity

becomes plastic first, the yicld condition eqn (24b) is satisfied first. Then substituting eqn
(25b) into egn (2-4b), we obtain the initial yield overall stress as

(6%, = [1 _ == ""’]r‘,*.. (35)

nt

Then the calculations and discussions similar to those in Stage 2a lead to the following
cxpressions
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uE—EN) =00+ f_'(_l_’;_M_)r?’ (36)
and
v J o fU=(-m{B~fB-D} ,
W= TTHA=N T mI—pa-n " D
From eqns (36) and (37), the overall hardening behavior can be obtained as
69, =2 (1=-p-f) £t / 8 (38)

K==+ T a=-pU=-N+1*

The ultimate state is then achieved at the same stress level obtained at Stage 3; i.e. the
maximum stress coincides with the average yield stress as given in eqn (34).

4. DISCUSSION

In the preceding section, the simplest example is solved to show the feasibility of the
present method. Although the obtained results show the average behavior, a clear phenom-
enological tendency can be obtained explicitly and quantitatively.

Comparison of eqn (28) with eqn (35) leads to the following relation : the matrix will
yield first if

T m

f T 1=fl-m)’

<~Z=2

39
- (39)
otherwise the inhomogeneity will become” plastic first. In the following several numerical
examples, Poisson’s ratio of the matrix matcrial is kept equal to 0.3 unless otherwise stated.

Figure | shows the cases when the inhomogeneity is chosen to be stiffer and stronger
than the matrix:i.e. m = 100 and ¢t = 3.0 or ¢ = 1.2, Addition of such particles will increase

» inhomogeneity yielding
3k > matrix yielding
f=0.8
0.6
0.4
0.2
m=100
2

Fig. 1. Overall elastic-plastic behavior of composite materials with spherical inclusions in pure
shear, v = 0.3, m = 100.
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Fig. 2. Overall elastic moduli of composite materials with spherical inclusions in pure shear, v = 0.3,
p

not only the initial stiffness but also the ultimate strength. Furthermore the initial yicld
point can be also enhanced if the material parameters are chosen so that the matrix yields
first, as indicated by the solid lines in the figure.

Figure 2 summarizes the overall inttial elastic moduli in terms of the modulus ratio m
and volume fraction /. In the case of spherical inhomogencities, it can be shown that the
predicted moduli coincide with the lower bound (see Hashin and Shtrikman, 1963) when
m > 1, and that they are identical with the upper bound when m < 1. Figure 3 shows

100} Sy,
M
r Th
i
10 2uE /1’
m
h=1
h=0.5 \
1 \
h=0.1

~

\

0.1

h=0.01

\vm
0.01

0 02 04 06 08 10

Fig. 3. Overall hardening rate of composite materials with spherical inclusions in pure shear, when
yielding of the matrix occurs first v = 0.3,
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» inhomogeneity yielding
1.0 "— """"" f =‘06 » matrix yielding v
Iy £=0.2
Sy == - —
<y 0.4
—————— 0.6
051 08

------ _ — t=13

- - - t=1/60
v=0.3, m=0.01

0 10 20 30 40
2UE /17

Fig. 4. Overall elastic-plastic behavior of composite materials with spherical inclusions in pure
shear, v = 0.3, m = 0.01.

changes of the hardening rate after the first yielding; i.e. the coefficient of the first term of
eqn (32), in the case when material parameters are chosen so that the matrix yields first.
The lines in the figure indicate the contours of the constant rate with respect to the elastic
modulus ratio m and the volume fraction f. The smaller the modulus ratio becomes, or the
smaller the volume fraction is, the smaller this rate of hardening becomes.

As is clear from eqn (38), this hardening rate is independent of m in the case when the
inhomogeneity yiclds first. The tendency is opposite to those in Fig. 3, and the larger the
volume fraction is, the smaller the hardening rate becomes, as can be observed from the
dashed lines in Fig. 1.

On the other hand, it softer and weaker materials arc chosen for inhomogeneitics, the
overall material shows a more ductile property, as shown in Fig. 4:i.e.m = 0.0l and ¢t = 1/3
or 1/60. The ultimate strength at which both phascs become plastic is reduced by addition
of such inhomogencitics. However, if the matrix material is chosen so that it yields first,
the softer the inhomogeneity is, the larger becomes the total deformation at the ultimate
state, as indicated by the solid lines in the figure. On the contrary, if the inhomogeneity
yields first, the overall material yiclds at a relatively lower level of the applied stress, and
no improvement of ductility is observed.

In order to estimate this improvement of ductility quantitatively, we define a measure
of ductility D by

(E|1 at a?: = f,)
a8l = 1) 40
/() 9)

i

D

the denominator of which expresses the yield strain of the matrix alone, and D becomes
unity when no inhomogencity exists. Using eqns (32), (34) and (38), we can express this
ductility measure by

o, Ba=-o

b= m p—1 (“41a)
when the matrix yields first, and
11—t
o1+ 20 (@1b)

when the inhomogeneity yields first. In the latter case, ductility is independent of the ratio
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of the elastic moduli m, as is clear from eqn (41b). The relations obtained from egn (41)
are shown in Fig. 5 as the contour lines in terms of the yield stress ratio ¢ and elastic
modulus ratio m. From eqns (34) and (39). it can be shown that the strength of composites
increases by addition of inhomogeneities if ¢ > 1. Therefore, the softer and stronger in-
homogeneity increases both the strength and ductility of composite materials.

As for the hardening rate of composite materials. Tanaka and Mori (1970} have
derived a simple formula as

Sfm(l fﬁ)

# = (hardening rate) = 2u T30 )" (42a)

while the present method leads to eqn (32), which reads

(=)

h=2u T=B(—m)y—mpf"

(42b)

The discrepancy lies only in the last term of the denominator of eqn (42b). and it can be
negligibly small when f'ts very small. In fact, since eqn (42a) does not sufficiently take into
account the interaction effects, it applics only when fis small and yields unacceptable results
when /= 1. [n comparison with experimental data, accuracy has been examined (see Mura,
1982). An example is a Cu-5i0; single crystal, where the Si0; particle is the spherical
inhomogeneity ; ¢ = 46.1 GNm °, u* = 31.3GNm * v =0.33andf = 0.0052; eqn (42a)
gives /2 = 2.18 x 10 *, while eqn (42b) yields #/2jc = 2.19 x 10 *. The volume fraction is
so small that the difference is small. Since eqn (42a) accounts for approximately 65% of

t 10}

0.7t

0.5

0.3

0.27

0.1 A , - , .
001 01 .1 1 10 100 1000

m
Fig. 5. Degree of ductility improvement of composite materials with spherical inclusions in pure
shear, v = 0.3,/ = 0.2. In the region indicated by 8. the yielding occurs first in the inclusions, while
the matrix yields first in 4.
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the experimentally observed hardening. the present method also gives a lower estimate of
hardening.

Behavior at unloading can be also traced step-by-step similarly to the procedure above.
Since both materials become elastic immediately after unloading, the overall behavior
becomes the same as the initial elasticity of the composite. However, the accumulation of
the residual plastic strains due to yielding shifts the next yielding point. For example, if
unloading starts at a certain positive shear stress state as ¢%, = g,, where (¢%:).
< 6, € (6%,).. the next yielding occurs at 69, = {5,—2(6%,).}. Therefore this successive
vielding occurs in the earlier stage than the virgin material by the amount of {a,—(¢%).}.
Hence the overall behavior shows the Bauschinger effect of the kinematic hardening for the
initial yielding, although the ultimate state is always achieved when eqn (34) is satis-
fied. A typical behavior in loading-unloading of composite materials is shown in Fig. 6.

As far as the Levy-Mises-type elastic—perfectly-plastic materials are concerned, the
bulk modulus does not change even with the plastic deformation, because plasticity is not
affected by the hydrostatic pressure component. Therefore letting £ denote the overall bulk
modulus, we obtain, from eqn (23).

R 1=k
P ey Ty s @9

where & is the bulk modulus ratio defined by

N
kzz. (44)

Since this bulk modulus remains constant at any stage of deformation, £ can be considered
as the instantancous tangent bulk modulus. On the other hand, the tangent shear cocflicient
i, changes with deformation as is given in eqns (26), (32) and (37). In the clastic region,
£,k shows relations similar to those in Fig. 2 for g,/u, as is apparent from the comparison
with eqn (26).

When the shape of isotropic inhomogencitics in an isotropic material is spherical, the
overall instantancous tangent modulus also shows an isotropy. Therefore the tangent
Young's modulus and Poisson ratio can be calculated from eqns (26), (32), (37) and (43).
Since £ remains constant and g, — 0 when both phases become plastic, the tangent Poisson
ratio becomes 1/2. This reflects the incompressibility of the Levy-Mises-type plasticity.

A uniaxial loading condition can be also applied in the same manner as that in pure
shear. In this case, the incompressibility of the plastic deformation and the axisymmetry of

[
T
t=3
m=100 1
£=0.2
-1 Z/ 1 2
0 -
211512/ ":
1 v=0.3

Fig. 6. Typical behavior of loading-unloading of composite materials with spherical inclusions in
pure shear.
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the loading condition leads to simple relations as (£1)+2 = (e])3; = —~ 1;2(ef) . (n = M, Q).
If the von Mises yield condition is employed. it can be easily shown that the initial yielding
occurs at 69, = (69)), = \/3(67:).. where (¢{.). is given in eqn (28) or (35). Similarly the
ultimate stress is calculated as (¢9,), = \/ 37,. The instantaneous tangent Young's modulus
E, is directly obtained from eqn (23). and the results are almost the same as those in Fig.
2 in the elastic range. The hardening rates of Young's modulus are obtained as

E_Naoawmiie L oo f 1 200U =)0 =f Y)Y
E,—B[“ 2¥){1+1*1X}+2(1+»){1+B_vl‘}}_ 77 ]

(45a)

if the matrix yields first, and

. , O e
E_1 [(1 ._2,.){‘ v L X}+2“ m{; A Y}_ 2/ (1 +9) {1+ (1~ n]

E73 i TS (1-NZ
(45b)
if the inhomogeneity becomes plastic first, where
_{x=Dx=x*) B De—pry (=Dt v
XY= A . Y= B ., L= B R (46)

and A and B are defined in egn (22). Equation (45a) shows the relations quite simitlar to
those in Fig. 3, when m = &,

5. CONCLUSION

A simple extension of the method to estimate elastic moduli of composites is proposed
for an clastic-plastic composite material. Obtained overall behavior shows a simple bilinear
property in pure shear, and the Bauschinger effect can be observed. A quantitative evalu-
ation of ductility improvement has also been carried out.
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APPENDIX: CASE WHEN SURFACE DISPLACEMENT IS PRESCRIBED

Consider that the surface displacement or the far-field strain §° is prescribed instead of the surface traction
treated in Section 2. Let £, and &, denote the disturbed strain fields of the matrix and inhomogeneity respectively.
Then these disturbances must satisfy

=iy +fin =10 (AD

Let ¢, and ¢, denote the local stress fields in the matrix and inhomogeneity, respectively. Then these stresses can
be expressed as

Gy = CEC+E,—E5). in (F—). (A2)
Gq = CHEO+8q~E0). in . (A3)

Comparison of eqns (A2} and (A3) leads to the following expression. and the equivalency condition can be also
written in the following form:

Fo = C*UE" + 8y =) + (g —Ey) — AZ") (Ada)
= C{(E" + 8y —E4) + iy ~ ) — (AET +E%)). (Adb)

From egn {A4), (&, ~ &) is considered as a disturbed strain component due to the existence of inhomogeneity
and plastic deformation. Thercfore, replacing {F) ineqn (8) by (5, — £4,). we have

o == S(AET+0%). (AS)
Eliminating &, from egns (A1) and (AS), we obtain
By = = SIAZT +8%), {A6)

Substitution of egn (AS) into eqn (A4b) results in an alternative expression for the local stress in the inhomogencity
as

dy = CUE" + 8y —E0) +(S - DHAE" +i%)). (A7)
Using eqns {(A2) and (A7), we can define the overal] stress by the average stress as
d=(1-f)iy,+/dy
= %+ —i5) +f C(S-NAE" +8*),
and substituting eqn (A6) into it, we obtain
G =CE? i)~ CAs +8%). (A8)

On the other hand, the equivalency condition eqn (A4) can be rewritten by substitution of eqns (A5) and (A6)
to obtain

(A7 +0%) = [C= (1 =fUC-C*)8) (= C*)i¥ - Ol + Ol (A9)

Simple manipulation after substitution of eqn {A9) into eqn {A8B) leuds to the following expression for the overall
stress field :

¢ ={C—fCIC-( - NC-C*)8"(C- T =" +f (1 =NCIC= (1 ~fUC=C*)3]
x (= )T~ A",

or inversely,

=& = [C(C=CHS—/S-DIIUC- U =UC=C)8}C 16 +5 (1 = UC = C*HS - Da&™).
(A10)

Equation (A10) defines ¢ for given £°, but is cxactly identical with eqn (17), which defines £ for given ¢°.
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Furthermore, several steps of cumbersome manipulation after substitution of eqns (A6). (A9) and (Al0) into
eqgns {A2) and (A7) result in

G+, =6—fCE-DC~(C-CHS—fS-D} ' (C-CTHC 6+ A"},
G+65=6+(1=-NCSE-DIC-(C-C)S—f(S-D1) ' (T~ "6+ C*asf). (AL

which coincide with eqn (13).



